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The existing derivations of the Percus-Yevick equation are not readily 
extendable into the nonequilibrium domain. In particular, the elegant 
Percus functional construction relies on a test particle theorem which lacks 
an exact nonequilibrium generalization. We propose here a new construc- 
tion which utilizes some elementary ideas of functional expansions together 
with the equilibrium BBGKY hierarchy of equations. Also, we feel this new 
construction provides fresh insight into the physical basis of the 
equilibrium Percus-Yevick equation. 

KEY W O R D S  : Structure of liquids ; kinetic and transport theory of fluids ; 
Percus-Yevick equation. 

1 .  I N T R O D U C T I O N  

The equi l ibr ium Percus -Yevick  (PY) equa t ion  for  the two-par t ic le  d is t r ibu-  
t ion  funct ion is pe rhaps  the best  existing descr ip t ion  o f  a fluid consis t ing o f  
par t ic les  interact ing via a ha rd -core  potent ia l  energy. ~4~ Compar i son  with the 
compu te r  Mon te  Car lo  studies ~4'26'18~ indicates  the Percus -Yevick  equa t ion  
is a good  descr ip t ion  for  all par t ic le  densit ies except  very near  the solid phase.  
The success o f  the  equi l ibr ium Percus -Yevick  equa t ion  s t rongly suggests the 
nonequi l ib r ium ana log  should  be constructed.  2 Previously we repor ted  on our  
cons t ruc t ion  o f  a nonequi l ib r ium ana log  o f  the Percus -Yevick  equa t ion  ~21~ 
based  on the m e t h o d  which we descr ibe and  apply  here to the or iginal  
equi l ibr ium problem.  

Examina t ion  o f  the existing cons t ruc t ions  o f  the equi l ibr ium Pe rcus -  
Yevick equa t ion  ~15,~6~ indicates  none  are  suitable,  wi thout  modif ica t ion,  for  
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generalization to the nonequilibrium domain. Specifically, the Percus func- 
tional construction (16~ of  the Percus-Yevick equation is not immediately 
generalizable, since functional methods are not sufficiently well developed for 
problems in classical statistical mechanics. A great deal of progress has 
recently been made on this problem (11~ and it is reasonable to expect func- 
tional methods will advance to the point where classical statistical mechanical 
problems can be confronted with confidence. A second, more formidable 
difficulty resides in the fact that the test particle theorem a has no exact 
analog in the nonequilibrium domain. (16~ The test particle theorem will have 
to be replaced by some more general, inclusive principle before progress can 
be made. 

The difficulties of the usual functional methods are circumvented here by 
the introduction of  a method which does not rely on the test particle theo- 
rem. (2~ The method which we give here utilizes some elementary ideas of 
functional expansions (22~ together with the equilibrium BBGKY 4 hierarchy 
of equations. ~'2'6'9'27~ The method described here and the Percus functional 
method (16~ are different in formulation but they nonetheless share a common 
point of view. Insight into a system in both methods is obtained by observing 
how physical changes in the system produce corresponding changes in the 
functional describing the system. However, the particular kind of system 
change contemplated is quite different in the two methods. 

The Percus functional method utilizes a system change resulting from the 
insertion (or removal) of a particle that was not originally part of  the system. 
Since the number of particles is not fixed, one is forced to formulate the 
statistical problem in the grand canonical ensemble/8,16~ One proceeds to 
study how a functional property of  the system changes due to the presence of  
the additional particle. Experience has shown the choice of the appropriate 
functional for study apparently depends upon the nature of the interparticle 
interaction. Mathematically, one expands a chosen functional in a Taylor 
series of some function and generally only the first term of the expansion is 
kept. Both the functional and the function of the expansion are chosen in a 
somewhat ad hoc manner. Physical arguments sometimes help in this choice, 
but usually it is the accuracy of the resulting integral equation that in the end 
justifies the choice. A simple example of this procedure is the Coulomb gas 
system, where the appropriate functional is the single-particle distribution for 
a system in an external field, while the function of the expansion is the 
external field itself. Application of the test particle theorem relating the single- 
particle distribution of the system in an external field to the two-particle 
distribution of a uniform system without external field leads to the well- 
known Debye-Hfickel integral equation, (5'~6~ which describes reasonably well 

a The test particle theorem is embodied in Eqs. (6.1) and (6.4), pp. II-70, 71 of Ref. 16. 
4 Bogoliubov, Born, Green, Kirkwood, and Yvon. (1"2'm27~ 
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the weakly coupled plasma, ca) The Coulomb gas problem is an interesting 
example since another choice for the functional leads to the convolution- 
hypernetted chain (CHNC) equation, which describes the plasma somewhat 
better. Neither the C H N C  functional nor the Debye-Hiickel functional can 
be shown to be a priori better for describing a plasma in a certain domain. 

The functional-hierarchy method described here also contemplates a 
system change; however, in this case one examines how the change in position 
of a particle affects the properties of  the system. In this method, the number 
of  particles remains fixed, so that the grand canonical ensemble is not 
necessary. In addition, we invoke some simple ideas of  functional power 
series, but the functional Taylor series is not used per se, since we will not 
introduce the functional derivative. Instead, the coefficients of  the functional 
expansion are determined by utilizing the equilibrium BBGKY hierarchy of 
equations in a manner described later. Again, as in the Percus functional 
method, the choice for the functional is quite arbitrary. We will, however, 
give a somewhat new physical motivation for the particular functional 
chosen for consideration in the construction of the Percus-Yevick equation. 

The system change for the functional-hierarchy method based on the 
change in position of  a particle is related to the system change produced by an 
external field as utilized in the functional test particle method. Specifically, 
the test particle theorem indicates the external field can be due to a particle 
not considered part  of  the system. The change in the external field can be 
produced in two related ways: the strength of the coupling of the test particle 
with the other particles can be varied, or alternatively, the position of the test 
particle can be changed. There is thus an underlying physical connection be- 
tween the functional-test particle method and the functional-hierarchy method. 

2, THE E Q U I L I B R I U M  H I E R A R C H Y ;  CLUSTER F U N C T I O N S  

We will utilize the usual statistical distribution functions 5 F(rl), 
F( r l ,  r2), F(r~, r2, rs), etc. as defined by Fisher. (6~ Specifically, we will use the 

s The distribution functions are defined and discussed in Section 1 of Chapter 2 of Ref. 
6. Fisher also discusses the utility of the two-particle distribution function in the 
remainder of Chapter 2. In the definitions (la)-(lc), ~) is the volume of the N-particle 
system and Q is the configuration integral given by 

Q = fexp[-flV(rx ..... rn)] dr1 --. drN 

Also,/3 = 1/kBT, where kB is the Boltzmann constant and Tis the absolute temperature. 
The interparticle potential energy will be assumed to have the two-body additive form 

V(rl ..... rN) = � 8 9  ~ V( l r . - r a l )  
~=IB=I 

Notice that since the N particles are identical, we have F(rl, r2)= F(r2, rl), 
F(rl, r2, r,) = F(r2, rl, r3), etc. 
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definitions 

F(rl)  = o f  Q-~ exp[-flV(r~ .... , rN)] dr~ -.. drN (la) 

F(r~, r~) = f22f  Q-~ exp[- f lV(r l  ..... rN)] dr~ -.- drN (lb) 

F(rx, r2, r~) = ~2~f Q-~ exp[-/3V(r~,..., rN)] dr~ ... dr~ (lc) 

The equilibrium BBGKY hierarchy is obtained by differentiating each of the 
distribution functions with respect to rl and performing a simple rearrange- 
ment. 6 We shall utilize only the first two equations of the hierarchy: 

p j dr2 (~/arl){-flV([r~ - r2l))F(r~, r2) (2a) (~/~ri)F(rl) 

{(~/~rl) + (9/grl)[/3V([rl - r2[)]}F(rl, r2) 

P.I dr3 (e/~r~){-/3V([rl - r3])}F(rl, r2, r3) (2b) 

The hierarchy of equations may be utilized for the calculation of the 
distribution functions in various ways, depending upon the system under 
consideration. For  example, Bogoliubov (1~ assumed the distribution functions 
of low-density gas systems are analytic in the density and he then showed this 
assumption leads to the usual Mayer expansion. (1,3) The Coulomb gas system 
requires a different treatment of the BBGKY hierarchy, since the coefficients 
of  the Mayer expansion diverge. (3) The classical remedy (~,8,2~ is the introduc- 
tion of the cluster functions C(r~), C(rl ,  r2), C(r~, r2, r3), etc. defined via 

C(r~) = F(rl)  (3a) 

C(r~, r2) = F(r l ,  r2) - F(r~)F(r2) (3b) 
C(rl ,  r2, r3) = F(r l ,  r2, r3) - F(rl)F(r2, rs) - F(r2)F(rl,  r3) 

- F(r3)F(rl,  r2) + 2F(rl)F(r2)F(r3) (3c) 

It is easy to invert Eqs. (3a)-(3c) and express the distribution functions in 
terms of the cluster functions. One obtains 7 

F(r~) = C(rl) (4a) 

F(r l ,  r2) = C(r~, r2) + C(r~)C(r2) (4b) 
F( r l ,  r2, r3) = C(rl ,  r2, r3) + C(r~)C(r~, r3) + C(r2)C(r~, rz) 

+ C(r~)C(r~, r~) + C(r~)C(rz)C(rz) (4c) 

6 The BBGKY hierarchy of equations is derived in Section 1 of Chapter 4 of Ref. 6. 
The thermodynamic limit [(N, f~)--~ oo such that (N/f~)--~ p, the density] has been 
taken in Eqs. (2a) and (2b). 

v It is easy to show (see Fisher ~)) that F(rl) = 1 for spatially homogeneous systems 
without external fields and also F(rl, r2) = F(lr~ - r2[). 
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Utilization of Eqs. (4a)-(4c) to eliminate the distribution functions in the 
BBGKY hierarchy (2a)-(2b) yields a hierarchy of equations of the form 

P.f dr2 (c~/~r~)(-fV(lr~ - r2])}C(r~, r2) = 0 (5a) (a/~rl) C(rl) 

((O/~r~) + (~/&~)[3V([rl - r21)])C(h, r2) 

+ (~/~r~)(3V(lrl - r21)) 

Of  dr3 (~/~h){-/3V(lr~ - ral))[C(r2, r3) + C(rl,  r2, r3)] (5b) 

The cluster functions have the desirable property of vanishing whenever any 
particle of the cluster is removed a large distance from the remaining particles 
of the cluster. Our interest in this paper is on the hard-core system, but we shall 
nonetheless have a use for the cluster functions. Clearly, the density ex- 
pansion of the distribution function approach is useful for low-density 
hard-core systems. Unfortunately, for hard-core, moderate- and high-density 
systems the density expansion approach is not appropriate and a substitute 
must be found. The cluster functions will be utilized as a useful substitute for 
the density expansion method in a manner we will describe in the next section. 

3. THE F U N C T I O N A L  E X P A N S I O N  IN THE I N T E R A C T I O N  
OF THE T W O - P A R T I C L E  CLUSTER F U N C T I O N  

We previously mentioned that one classical method of treating the 
BBGKY hierarchy of Eqs. (2a)-(2b) is to assume each of the distributions 
functions (la)-(lc) has an expansion in powers of the density. The equations 
of the hierarchy may be solved iteratively and one thus obtains the usual 
Mayer expansion. The same procedure can be applied to the hierarchy 
(5a)-(5b) written in terms of the correlation functions. Specifically one 
obtains the second cluster function in the form 

C(lrl - r2l) - - f ( l r l  - r21) + p(exp[-/3V(lh - r2])]) 

x I f  d r a f ( l h - r a l ) f ( l r 3 - r z [ ) +  O(p2)] (6) 

where f ( ]h  - r2[) = exp(-/3V([r~ - r2l) - 1 is the Mayer f-function. This 
result is usually expressed in terms of the distribution function (see Refs. 1, 
3, and 13, for example), but later we will utilize expansion (6) to motivate our 
construction of the equilibrium Percus-Yevick equation. We also previously 
noted that expansion (6) cannot be applied to the Coulomb gas problem, 
since, among other things; the integrals forming the coefficients of the expan- 
sion diverge. The cluster functions were originally introduced at this point to 
deal with this problem. (a'2~ One assumes the cluster functions have expan- 
sions in the plasma parameter 7 defined by 7 = e2/kBTAD, where the Debye 
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length A D is defined by AD = (k~T/4~pe2) 112, where e is the charge on an 
electron and p is the particle density. The assumption that the cluster functions 
are analytic in ~, allows one to again solve the BBGKY hierarchy of equations 
by an iterative procedure. One subsequently obtains to first order in 7 the 
Debye-Htickel expression for the two-particle cluster function C(Ir~ - r2[) 
of a plasma 

C(Irz - r z l )  - ~,AD exp(-I t1 - r ~ l / a D )  
- - I r l  - r2[ + 0 ( 7  2) ( 7 )  

with the higher order terms in 7, also computable. (6~ 
The construction of the Percus-Yevick equation we present here does not 

involve parameter expansions. Instead, we shall assume the existence of more 
general functional expansions. To illustrate the procedure, we will begin by 
obtaining the Debye-Hfickel result, Eq. (7), via the functional-hierarchy 
method. Let us assume the cluster functions have functional expansions in the 
interaction V(lr  ~ - r21) of the form 

f, 
C(rl,  r2) = A0(rl, r2) + J dr3 V([rl ra[)A1(r3, r2) 

f dr3 dr~ g(lr 1 - r3l)g([rl - r4]) + 

• A2(r~, r3, r2) + O(V 3) (8a) 

r2, r~) = Bo(rl, r2, r3) + f dr~ V(Ir 1 - r~I)Bl(r~, r3, r2) c(rl, 

dr~ dr5 V(lrl - r41)V(Irl - rsD + 

• B2(rs, r4, r3, r2) + O(V 3) (8b) 

The form of the expansions (8a)-(8b) is justified by noting that if one chooses 
rl = 0 (in a sense placing particle 1 at the origin), then Eq. (8a) takes the 
general form for the functional expansion given by Volterra. ~22~ A similar 
observation can be made concerning Eq. (8b) and also all the other higher 
order cluster functional expansions. We, however, do not wish to fix particle 1 
at the origin, since we will soon determine the coefficients of the functional 
expansion (8a) by utilizing the equilibrium BBGKY hierarchy of equations 
which were obtained by varying the position of particle 1 through the process 
of differentiation. Also, one should note that the variable rl must reside in 
each factor of the interaction V(]rl - rkl) since if r~ is removed far from the 
remaining particles of the system, then one expects the duster function to 
vanish. The coefficients of the functional expansion are chosen independent 
of r~ for simplicity. The leading terms of expansions (8a) and (8b), that is, 
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A0, B0, etc., must vanish, since if particle 1 is removed from the cluster, then 
the interaction V(lrl - rkl) vanishes and the cluster functions must also 
vanish. 

The higher order coefficients A1, B~, etc. are obtained by substitution of 
the functional expansions (Sa) and (Sb) into the hierarchy equations (5a)- 
(5b). Specifically, one obtains 

(~/~r~)f dr3 V([h - ra[)Al(r3, r2) + (~/?rl){3V([rl - r2[)} 

= p f  dr3 (~/~r~){-3V([rl - r3[)} 

x I f  dr~ V(lr2- r4[)Al(r4, r3)] (9) 

where we kept only the first-order terms in the interaction V(lrk - r~ [). If  we 
now utilize the expansions (8a) and (8b) we can write Eq. (9) in the form 

(~/erz)C(r~, r2) + (~/~r~){3V([r~ - rz[)} 

= p f  dr3 (~/~r~)(-3V([r~ - r3])}C(r3, r2) (10) 

and integration yields immediately 

C(r~, r2) + {3V([rl - r2[)} = p f  dr3 {-/3V([r~ - r31)}C(r3, r2) (11) 

the usual Debye-Hiickel integral equation, which leads to the result given in 
Eq. (7). We utilized Eq. (8a) to write Eq. (10) in terms of the cluster function 
since it is easier to solve the resulting equation (1 !) for the cluster function 
C(r~, r2) than it is to solve the corresponding equation for A~. We could have 
proceeded to solve for the coefficient A~, but this would not be useful for our 
purpose. Notice that the two-particle cluster function resulting from Eq. (11) 
is accurate to first order in the interaction. We have shown that utilization of 
the cluster functional expansions (8a) and (Sb) allows us to make contact with 
the Debye-Hiickel theory 

One computational point deserves further comment. When the functional 
expansions (8a) and (8b) are substituted into, the BBGKY hierarchy the order 
of a term in the interaction is not simply determined by the number of times 
the interaction V appears. Rather, the order of a term is determined by the 
number of times the interaction appears with the particle coordinate rl .  For 
example, a term containing the combination V(lrl - r3[)V([r2 - r4]) is a 
first-order term since rl appears only once in the interaction. The similar term 
containing the combination V(]r~ - r2[)V([rl - ra[)is of second order since 
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rl appears twice. The reasons for these rules 8 should be physically apparent, 
given our discussion of the form chosen for the functional expansions (8a) 
and (8b). We should also mention that C(r2, r3) of  Eq. (5b) has an expansion 
in V([r~ - r~[), but the contributions of  this expansion are of  second order in 
V(lr~ - r=[) in Eq. (9) and are therefore neglected. 

The approach we have outlined leading to the Debye-Hiickel  integral 
equation is useful for the Coulomb gas problem. Unfortunately, such a 
functional expansion is not useful for the hard-core system even at low 
density since the kernel of  the integral equation (11) is not well behaved. I f  
we are to have a theory of dense, hard-core systems, then the naive functional 
expansion will have to be replaced by a more powerful approach. 

4. AN I M P R O V E D  FUNCTIONAL EXPANSION A N D  
THE K I R K W O O D - S A L S B U R G  (GENERA) EQUATION 

The poor  convergence properties of  the functional expansions (8a) and 
(8b) of  the cluster function in powers of  the interaction leads us to consider 
other alternative functionals. As a motivation, we consider a strategy found 
useful in improving the convergence of the expansion of a function f(x) if 
f(x) can be written as a product of  two functions h(x) and k(x). We also 
assume h(x) is a tabulated, well-known function of x and therefore does not 
require expansion. Frequently there are cases where the expansion o f f (x )  = 
h(x)k(x) converges slowly while the expansion of k(x) converges rapidly. It  is 
more sensible in this case to extract the known function h(x) and first compute 
the expansion of k(x). One then obtains f(x) by multiplication of k(x) by 
h(x). As an example, consider the function f (x )  = (1 + x ) e x p ( - x ) ,  which 
has an expansion in x which alternates and converges slowly. If, alternatively, 
we treat e x p ( - x )  as a known, tabulated function, then we may first expand 
k(x) = (I + x) in powers o f x  and then ob ta inf (x)  utilizingf(x) = k(x)h(x), 
where h(x) = e x p ( - x ) .  This example is of  course trivial since the expansion 
of  k(x) terminates and is simply 1 + x. 

A strategy similar to that described above may be applied to the N- 
particle problem, where the consequences are not so trivial. We return to the 
virial expansion (6), which we rewrite in the form 

{exp[/~V([rl - r2l)]}[C([rl - r2[) - f ( I r l  - r2[)] 

= p f  draf(]r~ - ral)f([ra - r2[) + O(p 2) (12) 

e One might argue that we should not have expanded C(r2, r3) appearing in Eq. (9) 
since the cluster does not contain particle 1. We agree, but nonetheless we chose to 
expand C(r2, r3) to illustrate the counting procedure just described, since the situation 
is more complicated in the nonequilibrium case where we treat particles 1 and 2 on an 
equal footing. In any case, the final result, Eq. (11), is unaffected by our expanding or 
not expanding C(r2, ra). 
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When the density of the system is sufficiently low, the terms on the left-hand 
side of Eq. (12) give a first approximation for the cluster function C(lrl - r2[). 
Furthermore, all the terms involving the direct interaction between particles 
one and two have been written on the left-hand side of Eq. (12); the terms on 
the right-hand side of Eq. (12) are those terms involving indirect interactions 
between particles one and two mediated by the remaining particles of the 
system. 

These considerations encourage us to propose ~(]rl - r2]) as an alterna- 
tive functional for the N-particle system, where ~([r~ - r2[) is defined by 

"/(Ih - r2l) 

- {exp[/~V([rl - r2l)]}[C([rl - r2l) - f ( [ r l  - r2])] (13) 

The hope is that a functional expansion of ~([rl - r2]) in powers of the 
interaction might have better convergence properties than the functional 
expansion (8a) of the cluster function C(]r~ - r2]). 

One contemplates a functional expansion of ~ ( [ r l -  r2l) in the 
V(Irl - r2[) similar to expansion (8): 

~/(rl, r2) = %(rl, r2) + f dr8 V(]rl - r3])Th(r3, r2) 

+ f dr3 dr~ g(]r~ - r3l)g([h - r~]) 

x ~2(r~,  ra, r2) + O(V a) (14)  

We proceed to determine the coefficients of the expansion (14) in a manner 
similar to that employed previously when we determined the coefficients of 
the expansions (Sa) and (8b) via the BBGKY hierarchy. One immediately 
observes that the first coefficient ~o(]r~ - r2[) must be zero. This result follows 
from the fact that ~(Ir~ - r2[) itself vanishes as r,  is taken to infinity. The 
remaining coefficients of the expansion (14) are determined by first differen- 
tiating Eq. (13) with respect to r~ and obtaining 

(~/~rl)~/(]rl - r2[) = {exp[/3V([rl - r2[)]}(~/Dr0C([rl - r2[) 

+ {1 + ~(Ir~ - r2[)}(o/~rx){/3v(]rx - r2[)} (15) 

Then, utilizing the second equation of the BBGKY hierarchy (5b) together 
with definition (13), one obtains 

(O/~rl)~([r~ - r2]) 

= p{exp[/3V(]ra - r2])])f dr3 (O/~r~){-~V([r~ - r3])) 

• [C(r2, r3) + C(r~, r2, r3)] (16) 



96 R.L. Varley 

Substitution of expansions (14) and (8) into Eq. (16) and neglecting second 
and higher order terms in the interaction as before leads to 

f dr8 V(]rz - rs[)~/l(r3, r2) 0/~rl 

p.[ - r f) /ar  V(rr  - 07) 

In obtaining Eq. (17) we utilized the same counting procedure as used before 
in obtaining Eq. (9). Integrating Eq. (17) with respect to rz and utilizing 
expansions (8) and (14) yields to lowest order in the interaction 

{exp[/3V([rl - r2[)])[C([rl - r21) - f ( ] r z  - r2[)] 

p f  dr3 {-HV([r~ - r3l))C(]r3 - r2l) (18) 

which is an equation of the Kirkwood-Salsburg (KS) genera. In obtaining the 
above result, we also utilized the definition (13). The connection with the KS 
equation cB,z~ is more apparent if one writes the cluster function C(]rz - r2]) 
in terms of the distribution function F([rz - r2[) via definition (3). The original 
KS equation has the same form as Eq. (18) except that the KS equation 
treats all the particles as strongly coupled and hence the Mayer function 
f([r l  - r2[) appears in the integral instead of the "ba re"  interaction. We 
could also have performed such a "s t rong"  coupled expansion here, but this 
would deflect us from our purpose of obtaining the Percus-Yevick equation. 

5. I M P R O V E M E N T  OF THE CONVERGENCE OF THE 
SECOND FUNCTIONAL EXPANSION VIA UTILIZATION 
OF B U R M A N N ' S  THEOREM 

5.1. Inversion of the Cluster Functional Expansion in the 
Interaction 

Previously, we considered two functional expansions; expansion (8) for 
the cluster functional C ( ] r l -  r21) and expansion (14) for the function 
"q(Ir l -  r2]). The functionals C ( I r l -  r2]) and v ( I r l -  r2]) are obviously 
closely related. Since the two functionals are so closely related, their "differ- 
ence" is in some sense small and one might expect the expansion ofv(]rl - r21) 
in powers of C(Irl - r2]) to converge rapidly [or at least more rapidly than 
either expansions (8) or (14)]. 

The situation just described parallels a similar problem in function 
theory. There one considers two functions which have expansions in the same 
parameter. The convergence of one of the expansions can sometimes be 
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improved by utilizing Burmann's theorem. 9 One simply inverts one of the 
expansions so that one has the parameter expanded in terms of the function. 
Then one uses this expansion to eliminate the parameter in the second func- 
tion expansion, hopefully obtaining a more rapidly converging expansion. 

We will use the functional analog of Burmann's theorem to improve the 
convergence of the functional expansions (8) and (14). We assume that the 
inverse functional expansion of V(lrl - r21) in powers of the cluster func- 
tional C([rl - r2[) has the form 

{-/~V(]rl - r~l)} 

= D 0 ( ] h  - r2l) + f dr3 Dl(lr2 - r3l)C(lr3 - h i )  

+ f dr8 dr4 D2(r2, r3, r4)C(]r3 - h[)C(]r4 r l [ )  + O(C 3) (19) 

This form of the inverse functional expansion is made plausible if again one 
takes rl = 0, placing particle one at the origin. Then Eq. (19) takes the stan- 
dard form for a functional expansion as described by Volterra. C22~ Apparently 
the first coefficient D 0 ( [ r l -  r2[) vanishes since the cluster functional 
C(]h - r2[) vanishes when the interaction becomes zero. In principle, one 
determines the remaining coefficients D1, D2, etc. by substituting expansion 
(19) into expansion (8a). One thus determines the D~, D2, etc. in terms of the 
A~, A2, etc., which are presumed known. 

The procedure just described is not particularly useful for the purposes 
we have in mind, that is, the construction of the Percus-Yevick equation. We 
obtain a more useful result by substitution of expansion (19) to eliminate the 
interaction V([r~ - r21) in Eq. (11), thus obtaining a condition on Dl([rl - r21). 
Note that the cluster function C(Irz - r21) of Eq. (11) is valid only to first 
order in the interaction. We have not determined Az explicitly since this is 
unnecessary for our purposes. 

It is conventional to write the singular part of D~ separately from the 
nonsingular part. Thus we define the direct correlation function D via 

Dl(lr2 - rl[) = ~(r2 - r~) - pD([r2 - r~[) (20) 

Substitution of Eq. (20) into (19) and dropping the second order terms of C 
yields 

{ - 3 V ( l h  - r2[)) 

= C([rl - r2l) - p f  dr~ D(jr2 - r31)C(lr8 - rz]) (21) 
d 

9 See, for example, Whittaker and Watson, (2s) pp. 128-132, for a discussion of Burmann's 
theorem. 
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Next  we utilize (21) to eliminate the interaction V([r2 - r~[) in Eq. (11) for  
the purpose  o f  obtaining a condit ion on the direct correlat ion funct ion 
D(lr2 - r l[):  

p f  dr3 D([r2 - r31)C(lr3 - r l l)  

pf dr3 C([r l  - r3l)C(lr3 - r2l) 

In  Eq. (22) we have d ropped  all the second-order  terms in the cluster function 
C. I t  might  appea r  tha t  we have kept  second-order  terms in (22) containing 
the cluster funct ion combina t ion  C(]r4 - r~r)C(lr3 - r21). Note  tha t  there is 
only one cluster funct ion which contains particle one. Hence,  by our  me thod  
of  count ing discussed previously,  we mus t  consider this a first-order term. 
Rear rang ing  Eq. (22) slightly, one obtains  a condit ion on D(Ir~ - r2l) which 
is known as the Orns te in -Zern ike  relat ion ~~ 

C([r2 - r41) = D(lr2 - r41) + p f  dra D([r~ r3[)a([r3 r2[) (23) 
J 

5.2. Obtaining the Percus-Yevick Equation 

Substi tut ing the inverse functional  expansion (21) into the second 
of  funct ional  expansion (18), one obtains  the functional  expansion 

~ ( I r l  - r21) to lowest  o rde r  in the cluster  func t ion  C(Ir l  - r21): 

{exp[/3V(lh - r2l)]}[C(lrl  - r21) - - f ( [ r l  -- r2D] 

= p ~  ar3 [C(Irl - r31) 

- p f  dr~ D(lr3 - r , l )C( l r~  - r~l)]C([r3 - r21) (24) 

One might  think we have achieved our  goal o f  expressing ~(Irl - r21) as a 
funct ional  o f  C([rz - r21) and indeed we have;  however,  it is possible to go 
further.  Equat ion  (24) is one relat ionship between the direct correlat ion 
funct ion D and the cluster funct ion C, but  the Orns te in-Zern ike  relation (23) 
represents a second relat ion between the same two functions. I t  is possible to 
eliminate the direct correlat ion funct ion and obtain  an integral equat ion for  
the cluster funct ion alone in terms o f  the interaction. 

lo See Ornstein and Zernike (14~ and also Percus, ~1~ p. II-59, Eq. (5.6). 
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Utilization of the Ornstein-Zernike relation (23) in Eq. (24) yields 

{exp[/~V(lrl - r2D]}[C(lrl - r2l) - f ( l r l  - r~l)] 

p f  dra D(lr2 - r,I)C(lr, - rl[) (25) 

Utilization of the Ornstein-Zernike relation (23) once again in Eq. (25) yields 
an explicit relation for the direct correlation function in terms of  the cluster 
function 

O(lrl - r21) = {1 - exp[/3V(lrl - rzl)])[C(lrl - r2l) + 1] (26) 

Utilization of Eq. (26) to eliminate the direct correlation function in (25) 
yields finally 

{exp[/3V([r~ - r2l)]}[C([r~ - r2[) + 1] 

1 + pf dr3 {I - exp[/~V(]r2 - r31)]) 

• [c(Ir  - r3[) + 1]C(Ir3 - U l )  (27)  

which is the Percus-Yevick equation written in terms of the cluster function. 
In obtaining Eq. (27), we utilized the definition for the Meyer f-function in 
terms of the interaction energy. The usual form of the Percus-Yevick equa- 
tion z~ is obtained by utilizing Eq. (3b) to eliminate the cluster function in 
favor of the distribution function. 

We thus have obtained the Percus-Yevick equation without utilizing the 
test particle theorem. Some ideas of functional expansions were introduced, 
but these were functional expansions for systems without external field. 
Superficially, the Percus functional construction is much shorter than our 
construction; however, this is deceptive since one should also include the test 
particle theorem in the Percus construction. The construction of  the Percus- 
Yevick equation we have just presented is less elegant than the Percus 
construction. The strongest argument for our method of construction is its 
applicability to the nonequilibrium domain. As previously mentioned, 
application of the Percus functional method to this domain is problematic. 
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